BASIC CLASS NOTES OCTOBER 28, 2015

Reading Review and Class Preparation
This should be filled out prior to class.

Key Concepts to Be Discussed in Class:

Questions About Subject Matter for Class Session:

BASIC CLASS NOTES

OCTOBER 28, 2015

So What Why Who Cares

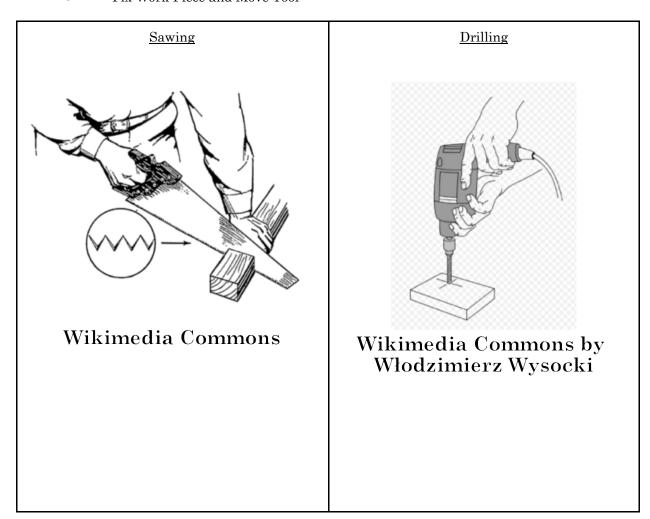
- Often We Need to Remove Material to Finish a Part
- Various Processes
 - o Lathes
 - o Milling
 - o Drilling
 - o Others
- Key Principles
 - Power and Energy Consumption
 - o Tool Life and Productivity

Outline

- Key Principles
- Machining Processes
- Reference (Pictures)
 - Kalpakian S.: Manufacturing Engineering and Technology; Addison Wesley, © 1995
 - o W. R. Riffe

BASIC CLASS NOTES

OCTOBER 28, 2015

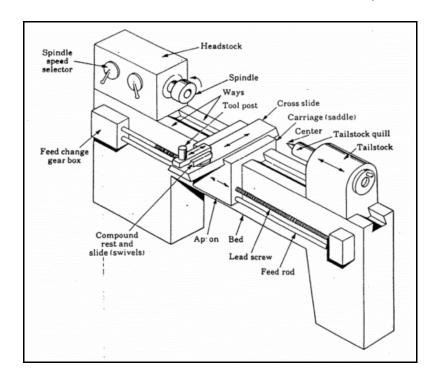

Concept Question

- Write a Working Definition of Machining
- Apply this to the Processes to Be Discussed this Class Session
 - What Are They?
 - How Are They Similar ?
 - How Are They Different?

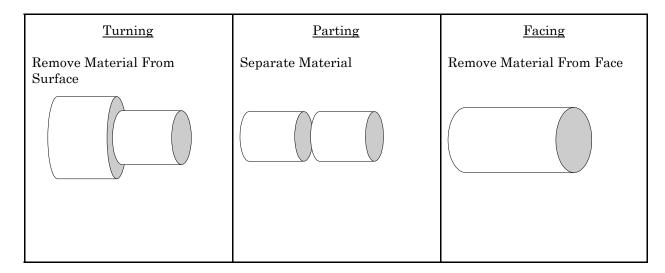
Sawing and Drilling

- Common Experience

 Fix Work Piece and Move Tool



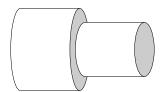
BASIC CLASS NOTES


OCTOBER 28, 2015

The Lathe

- Rotate Workpiece
 - Use Tools to
 Remove Material
 - Turning
 - Parting
 - Facing
 - o Drilling
 - o Boring

Lathe Operations



BASIC CLASS NOTES

OCTOBER 28, 2015

Material Removal Rate (Turning)

- Need to Calculate
 - Cutting Speed
 - o Material Removal Rate
- Not Simply rpm (N)

Cutting Speed (V)

$$V = N\pi D$$

D = Diameter

Material RR (Q)

$$Q = Vdf_r$$

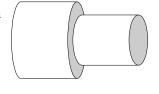
d = Depth of Cut

 $f_r = feed rate (length /rev)$

Energy Requirements

Material Removal Requires Energy
 Specific Energy (U) = Energy/Volume

$$P = UQ$$


Material	U (J/mm ³)	
Al Alloys	0.4-1.1	
Cu Alloys	1.4-3.3	
Steel	2.7-9.3	
Stainless Steel	3.0-5.2	
Ni Alloys	4.9-6.8	
Cu Alloys Steel Stainless Steel	1.4-3.3 2.7-9.3 3.0-5.2	

BASIC CLASS NOTES

OCTOBER 28, 2015

Team Problem

- How Much Power is Required For the Following Operation on an Aluminum Part?
 - Operating Speed 800 rpm
 - o Original Diameter 25mm
 - o Depth of Cut 0.3mm
 - Feed Rate 1.5x10⁻³ mm/rev
- Determine Cutting Speed (V)

$$V = N\pi D$$

$$= \left(13.3 \frac{rev}{s}\right) \pi (25mm)$$

$$= 1.0 \times 10^3 \frac{mm \ rev}{s}$$

• Determine Material Removal Rate (Q)

$$Q = Vdf_r$$

$$= \left(1.0 \times 10^3 \frac{mm \ rev}{s}\right) (3mm) \left(0.25 \frac{mm}{rev}\right)$$

$$= 785 \frac{mm^3}{s}$$

• Determine Required Power (P)

$$P = UQ$$

$$= \left(0.7 \frac{J}{mm^3}\right) \left(785 \frac{mm^3}{s}\right)$$

$$= 550W$$

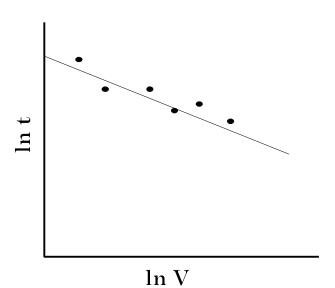
BASIC CLASS NOTES

OCTOBER 28, 2015

Assume that Ni instead of Aluminum were to be used and that no additional power is available. The minimum rpm possible is 650. What is the new depth of cut?

Tooling

- Tools Usually Made From Hard Materials
 - High Speed Steel
 - Cemented Carbides
 - o Ceramics


Material	Cost	Cut Speed	Wear
High Speed Steel	Low	Low	Poor
Cemented Carbide	Moderate	Moderate	Fair
Ceramics	High	High	Good

Tool Life

Tools Will Wear Out

o Taylor Equation

$$Vt^n = C$$

$$\ln t = \frac{1}{n} \ln C - \frac{1}{n} \ln V$$

Team Problem

- The Tool Has a Part Life of 8 hrs
 - If I Double the rpm the Part Life becomes 2 hrs
 - What if I Only Increase the rpm by 50%
- Importance of C

$$Vt^n = C$$

$$\begin{pmatrix} \frac{t_1}{t_2} \end{pmatrix}^n = \frac{V_2}{V_1}$$

$$V_1 t_1^n = V_2 t_2^n$$

$$n = \ln \left| \frac{\frac{V_2}{V_1}}{\frac{t_1}{t_2}} \right| = \ln \left(\frac{2}{4} \right) = 0.7$$

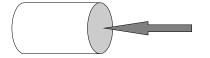
• Why Calculation of C is Not Required

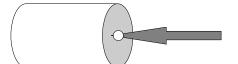
$$\left(\frac{t_1}{t_2}\right) = \sqrt[n]{\frac{V_2}{V_1}} = \sqrt[0.7]{1.5} = 1.8$$

- time = 4.4 hrs
 - O So Doubling RPM Reduces Part Life from 8 hrs to 2 hrs
 - Raising RPM to 1.5x Original Reduces Part Life from 8 hrs to 4.4 hrs.

BASIC CLASS NOTES

OCTOBER 28, 2015


Assume tripling the cutting speed reduces the tool life by a factor of six? How much would the tool life be reduced by increasing the cutting speed to six times (twice the tripling speed).


BASIC CLASS NOTES

OCTOBER 28, 2015

Drilling and Boring

- Rotate Work Piece and Make Hole
 - o Drilling Make Hole
 - o Boring Expand Hole

